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Abstract
The recent identification of aquaporin-8 (AQP8), an

aquaporin (AQP) channel permeable to water and ammonia,

in the inner membrane (IMM) of rat liver mitochondria

suggested a role for such AQP in the hydration state and the

metabolic function of mitochondria. Since thyroid hormone

triiodothyronine (T3) is known to modulate both the shape

and the metabolic activities of liver mitochondria, it was

interesting to investigate the expression and distribution of

AQP8 as well as the osmotic water permeability of the IMM

in liver mitochondria from rats in different thyroid states. By

semi-quantitative reverse transcriptase (RT)-PCR, when

compared with the euthyroid counterpart, the levels of

hepatic AQP8 mRNA significantly increased in the
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hypothyroid state, whereas they were strongly decreased

after administration of T3. A similar pattern was seen at the

protein level by immunoblotting mitochondrial membranes.

The upregulation of mitochondrial AQP8 in the hypothyroid

liver was confirmed by immunogold electron microscopy.

Stopped-flow light scattering with IMM vesicles showed no

significant differences in terms of osmotic water permeability

among the IMMs in the various thyroid states. Overall, our

data indicate that the T3 modulation of the AQP8 gene is a

rapid downregulation of transcription. Modulation of hepatic

AQP8 expression may be relevant to the regulation of

mitochondrial metabolism by thyroid hormones.
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Introduction

Triiodothyronine (T3) exerts significant actions on energy

metabolism, with mitochondria being a major target for its

effects (Soboll 1993). Extensive changes occur in the

mitochondrial compartment in response either to thyroid

hormone administration or to physiological states modulating

thyroid gland activity (e.g. cold exposure, aging, dietary

changes; Goglia et al. 1999). Indeed, alterations to the thyroid

state of animals have considerable effects on the synthesis

(Roodyn 1965, Goglia et al. 1988), the turnover (Gross 1971),

and the functional capacity of mitochondrial components.

Liver mitochondria from hypothyroid rats have a decreased

activity of membrane-associated electron transport enzymes

and anion carriers (Paradies et al. 1994), a failure that has been

ascribed to a lower expression of their corresponding proteins

as well as to changes in the composition of the inner

membrane (Soboll et al. 1994, Schonfeld et al. 1997). Thyroid

hormones are also known to modulate both shape and

metabolic efficiency of mitochondria (Jakovcic et al. 1978,

Goglia et al. 1988). However, although marked differences in

the shape and the number of the cristae have been reported in

the liver mitochondria of rats in different thyroid states
(Jakovcic et al. 1978, Goglia et al. 1989), the molecular

mechanisms underlying T3 modulation of mitochondrial

morphology remain mostly elusive. A clue to understanding

such mechanisms relates to the fact that mitochondria are

well-behaved osmometers and that their shape is influenced

by the movement of water accompanying the net transport of

solutes into and out of their matrix (Beavis et al. 1985).

Interestingly, an aquaporin (AQP) water channel, aqua-

porin-8 (AQP8), has recently been identified in the inner

mitochondrial membrane (IMM) of liver and other tissues

(Ferri et al. 2003, Calamita et al. 2005, Lee et al. 2005) by

providing valuable insights into the knowledge of the

homeostatic mechanisms underlying mitochondrial volume

homeostasis and shape plasticity. AQP8 immunostaining was

found to vary among liver mitochondria with heavy

mitochondria being the more reactive ones, an observation

that led to the speculation that AQP8-mediated water

transport could be important for rapid expansion of

mitochondrial volume (Calamita et al. 2005). Therefore, in

spite of their high surface-to-volume ratio, a feature that can

justify millisecond osmotic equilibration (Yang et al. 2006a),

mitochondria possess facilitated pathways for water diffusion

other than the AQP8 water channels (Calamita et al. 2006).
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In rat, liver AQP8 has also been suggested to play a role in

amino acid metabolism and detoxification of ammonia by

mediating the mitochondrial uptake of NHC
4 to supply the

urea cycle (Holm et al. 2005), a process known to be

influenced by the thyroid states (Marti et al. 1988, Hayase et al.

1991). However, the physiological significance of the AQP8-

facilitated ammonia transport was questioned in a recent work

by Yang et al. (2006b).

Aquaporins (AQP9 and AQP1) have already been reported

to be directly modulated by T3 at a transcriptional level in

porcine liver (Caperna et al. 2007) and rabbit developing

kidney (Mulder et al. 2003) respectively. However, no

information is yet available about possible effects exerted by

the different thyroid states on the expression of AQP8 in

mitochondria.

The aim of the present work was to investigate the effect of

thyroid hormone on the expression and distribution of AQP8

water channels in the liver mitochondria of rats in various

thyroid states.
Materials and Methods

Animals

Male Wistar rats (250–300 g; Charles River, Lecco, Italy)

were kept one per cage in a temperature-controlled room at a

rat thermoneutral temperature of 28 8C under a 12 h

light:12 h darkness cycle. A commercial mash and water

were available ad libitum. Three groups of rats (each consisting

of three animals) were used throughout: euthyroid (referred

to as N), hypothyroid (referred to as Hypo), and T3-treated

hypothyroid rats (referred to as HypoCT3). Hypothyroidism

was induced by the i.p. administration of propylthiouracil

(1 mg/100 g body weight) for 4 weeks together with a weekly

i.p. injection of iopanoic acid (6 mg/100 g body weight;

Lanni et al. 1996, Moreno et al. 1997). This treatment allowed

us to obtain hypothyroid rats with low thyroid-hormone

levels and an inhibition of all three deiodinase enzymes

(Moreno et al. 1997). T3 was chronically administered by

giving a daily i.p. injection of 15 mg T3/100 g body weight to
hypothyroid rats for 7 days, while the control hypothyroid rats

and the euthyroid ones received saline. The doses of T3 used

in the present study were within the average range of those

used in most studies to obtain a mild hyperthyroid state

without inducing a syndrome of hypermetabolism (Freake

et al. 1989). This animal model of HypoCT3 allows us to

exclude the effects of other active iodothyronines putatively

derived from T3 peripheral metabolism after T3 injection, as

all deiodinase enzymes were strongly inhibited.

At the end of the T3 or saline treatment (24 h after the last

injection), rats were anesthetized and killed by decapitation.

Trunk blood was collected and serum isolated to allow

analysis of hormone levels using specific RIAs (ICN

Pharmaceuticals, Diagnostic Division, New York, NY,

USA). Livers were excised, weighed, and immediately frozen
Journal of Endocrinology (2007) 192, 111–120
in liquid nitrogen and stored at K80 8C for later processing.

All experiments were performed in accordance with

European Union general guidelines regarding animal experi-

ments and were approved by our institutional committee for

animal care. For time-course experiments, Hypo rats were

acutely injected with 25 mg T3/100 g body weight and killed
after 6, 12, 24, and 48 h.
Preparation of mitochondria

Mitochondria were isolated as previously described (Lanni

et al. 1996, Calamita et al. 2005). Briefly, at the end of the T3

or saline treatments, livers were homogenized with a Potter–

Elvehjem homogenizer (four strokes in 1 min at 500 r.p.m.)

in an isolation medium consisting of 220 mM mannitol,

70 mM sucrose, 20 mM Tris–HCl (pH 7.4), 1 mM EDTA,

and 5 mM EGTA. The homogenate was centrifuged at 500 g

for 10 min at 4 8C and the pellet consisting of nuclei and

unbroken cells was discarded; the resulting supernatant was

centrifuged at 3000 g for 10 min at 4 8C and the related pellet

was washed twice before being resuspended in isolation

medium. The 3000 g supernatant was then used to prepare

the plasma membrane (17 000 g) and microsomal (100 000 g)

fractions. Mitochondria for immunoblot analyses were

resuspended in isolation medium to which a cocktail of

protease inhibitors had been added (1 mM phenylmethylsul-

phonyl fluoride, 1 mM leupeptin, and 1 mM pepstatin A).
Mitochondrial respiration rate measurements

Mitochondrial oxygen consumption was measured polaro-

graphically using a Clark-type electrode. The measurements

were carried out in duplicate using succinate (6 mM) as

substrate. The analyses were performed in a final volume of

0.5 ml of 80 mM KCl, 50 mM Hepes (pH 7.2–7.4), 1 mM

EGTA, 5 mM K2HPO4, and 0.3% BSA (w/v), both in the

absence (state 4 respiration) and in the presence (state 3

respiration) of ADP (300 mM) at 37 8C. Values for respiratory

control ratios (RCRs; state 3 rate divided by state 4 rate) were

calculated according to the method of Estabrook (1967).

The IMM vesicles were prepared from the 3000 g

mitochondria as previously reported (Calamita et al. 2005).

The purity of the vesicles was assessed by immunoblotting the

enrichment of the IMM protein marker prohibitin as

previously described (Calamita et al. 2005).
RT-PCR analysis

Total RNA was prepared from frozen tissue samples using the

Trizol kit according to themanufacturer’s protocol (Invitrogen).

One microgram of total RNA was reverse-transcribed as

previously reported (Moreno et al. 2003). The primers used for

the RT-PCR analyses had the following sequences: b-actin
sense, 50-TTGTAACCAACTGGGACGAT-30; b-actin anti-

sense, 50-TAATGTCACGCACGATTTCC-30; AQP8 sense

(mAQP8-30cons) 5 0-GGTGGACACTTCAACCCTGC-30;
www.endocrinology-journals.org
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andAQP8 antisense (mAQP8-31cons) 50-CCCAGCCAGTA-

GATCCAATG-30. Separation of the PCR products was

performed on a 2% agarose gel containing ethidium bromide.

Reverse-image signals of theRT-PCRbandswere quantified by

means of a Bio-Rad Molecular Imager FX using the supplied

software (Bio-Rad Laboratories). The optical densities of the

AQP8bandswere normalizedwith respect to the non-regulated

b-actin bands.
Immunoblot analysis

Aliquots (60 mg protein) of isolated mitochondria prepared as

above were heated to 90 8C and electrophoresed in an

SDS/13% acrylamide gel (Mighty Small II, Amersham

Biosciences) using a low molecular weight protein ladder

(Amersham Biosciences). The resolved proteins were

transferred electrophoretically onto nylon membranes that

were blocked in 5% (w/v) low fat milk in blocking buffer

(20 mM Tris–HCl (pH 7.5), 0.15 M NaCl, 1% Triton

X-100) for 1 h, and further incubated with affinity purified

rabbit antibodies against an N-terminal peptide of rat AQP8

(Ferri et al. 2003) in a final concentration of 1 mg/ml blocking

solution. Horseradish peroxidase antirabbit IgG-treated

membranes (anti-rabbit IgG peroxidase antibody; Sigma)

were developed by luminal chemiluminescence (ECL-Plus,

Amersham Biosciences).
Immunogold electron microscopy studies

Four animals per each condition were used for the study.

Samples of mitochondrial pellets obtained as above were fixed

in a mixture of 3% paraformaldehyde and 1% glutaraldehyde

in 0.1 mol/l PBS at pH 7.4 for 4 h at 4 8C and then processed

for immunogold electron microscopy as reported in our

previous work (Calamita et al. 2005). Immunolabeling

controls were performed by omitting the AQP8 antibody.

At least 15 images were obtained from each pellet of freshly

isolated mitochondria, while morphometric analysis was

carried out by counting the number of immunogold particles

over an overall micrograph surface of about 3000 mm2.
Stopped-flow light scattering

The size of the IMM vesicles to be used for the stopped-flow

measurements was determined both with a N5 Submicron

Particle Size Analyzer (Beckman Coulter Inc., Palo Alto, CA,

USA) and by morphometric analysis of electron micrographs.

The time course of vesicular volume change was followed

from changes in the intensity of scattered light at a wavelength

of 450 nm using a Jasco FP-6200 (Jasco, Tokyo, Japan)

stopped-flow reaction analyzer, which has a 1.6 ms dead time

and 99% mixing efficiency in !1 ms. The sample tempera-

ture (20 8C) was controlled by a circulating water bath.

Stopped-flow measurements were performed by following

the same experimental conditions and biophysical formu-

lation described in our previous work (Calamita et al. 2005).
www.endocrinology-journals.org
The data were fitted to a single exponential function. The

osmotic water permeability coefficient (Pf), an index

reflecting the osmotic water permeability of the vesicular

membrane, was calculated using the van Heeswijk & van Os

(1986) equation: PfZKexp$V0=Av$Vw$DC; where Kexp is

the fitted exponential rate constant, V0 is the initial mean of

vesicle volume, Av is the mean vesicle surface, Vw is the molar

volume of water, and DC is the osmotic gradient. The

medium osmolarity was verified by freezing point depression,

using a Halbmikro Osmometer (Knauer, Berlin, Germany).

In some experiments, the IMM vesicles were incubated for

5 min with 300 mM HgCl2, a compound known to block

most mammalian AQPs, including AQP8 (Ishibashi et al.

1997, Liu et al. 2006). To verify the blocking action of the

Hg2C ion, the HgCl2 treatment of the vesicles was followed

by a 15-min exposure to 10 mM reducing agent

b-mercaptoethanol.
Statistical analysis

All experiments were performed at least in triplicate.

MeansGS.E. were calculated based on three to five

independent preparations. Data were analyzed statistically

using Student’s t-test. Results were considered statistically

significant when P!0.05.
Results

Respiratory parameters of liver mitochondria in the various
thyroid states

As a first step, in order to ascertain the effectiveness of the

experimental treatment, we assessed the thyroid state of each

animal by measuring the serum levels of total triiodothyroxine

(TT3) and total thyroxine (TT4). As expected, the T3 and T4

levels were significantly lower in hypothyroid rats than in

euthyroid ones (Table 1). T3 administration to hypothyroid

rats increased TT3 levels by about 1.5- and 8-fold in

comparison with the euthyroid and hypothyroid rats

respectively (Table 1).

To further confirm, at cellular level, the thyroid state

of the animals, we next measured the respiratory

parameters of the liver mitochondria of the N, Hypo-,

and HypoCT3 rats. As expected, using succinate as

substrate, both state 3 and state 4 oxygen consumption

rates were significantly reduced in liver mitochondria

from hypothyroid rats in comparison with the euthyroid

values (Table 1). T3 administration to hypothyroid

animals restored the values observed in euthyroid rats

(Table 1). No change in the RCR was detected between

the three groups. These metabolic parameters were also

in line with the thyroid state of the animals used

throughout.
Journal of Endocrinology (2007) 192, 111–120



Table 1 Liver mitochondria respiration state 3 and state 4 rates, RCR and total serum T3 (TT3) and T4 (TT4) in
rats in different thyroid states. Results are presented as meanGS.E.M. of values from three rats in each group.
Determinations were done in triplicate.

State 3 State 4 RCR TT3 TT4

Animal group
Eu- 220G10 37G3 5.9G0.3 0.85G0.04 60.0G2.0
Hypo- 125G10* 21G2* 5.9G0.3 0.15G0.03* 7.0G0.9*
HypoCT3 245G18 44G3 5.6G0.2 1.2G0.11† 6.0G0.5*

State 3 and State 4 respiration rates are expressed as n atoms of oxygen consumption/min!mg of mitochondrial proteins.
Respiratory control ratio (RCR), state 3/state 4 respiratory rates. TT3 and TT4 serum levels are expressed as nmol/l. *P!0.05
vs N; †P!0.05 vs Hypo.
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Effect of T3 on the transcription of liver AQP8

Semi-quantitative RT-PCR was carried out to evaluate the

possible effects of T3 on the expression of hepatic AQP8 at a

transcriptional level. To do that, the mRNA of AQP8 was

measured in livers from rats in various thyroid states and

compared with the mRNA levels of the housekeeper gene

b-actin that was taken as an internal control.

The livers of hypothyroid rats showed significantly higher

levels of AQP8 mRNA (C82%) when compared with the

levels measured in the livers of the euthyroid counterparts

(Fig. 1A and B). T3 administration to hypothyroid rats

induced a decrease in the AQP8 transcript ofK58 andK21%

when compared with the hypo- or euthyroid livers

respectively (Fig. 1B). These data suggest a negative effect

exerted by T3 on the expression of the AQP8 gene. Unlike

AQP8 in this study and AQP9 in a recent work using porcine

liver (Caperna et al. 2007), no significant changes were found

at the mRNA level for AQP9, the other major AQP

expressed in the rat liver, throughout the various thyroid states

(data not shown).

To obtain further insight into the effect of T3 on AQP8

gene expression, time-course experiments were also per-

formed. As shown in Fig. 2A and B, AQP8 transcript levels

from liver harvested from hypothyroid rats were significantly

lower after 6-h T3 treatment, while they declined by 2.5-fold
at 48-h hormonal challenge, reaching values not significantly

different from those detected in the livers from hypothyroid

rats chronically treated with T3 (HypoCT3).
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Figure 1 Semi-quantitative RT-PCR analysis of AQP8 mRNA
expression in livers of rats in the various thyroid states. (A)
Representative experiment showing AQP8 in the livers of the
eu-thyroid (N), hyper- (HypoCT3), and hypothyroid (Hypo) rats. The
mRNA of the housekeeping geneb-actin was taken as internal control.
(B) Densitometric analysis of AQP8 mRNA normalized against the
b-actin transcript (nZ9 rats). The level of AQP8 mRNA is much higher
in the Hypo than in the HypoCT3 or N conditions. *P!0.01.
Immunoblotting analysis of liver mitochondrial AQP8 in the
different thyroid states

Immunoblotting experiments were performed to look at

possible post-transcriptional regulation of AQP8 by T3.

Mitochondria were incubated with rabbit polyclonal

antibodies directed against an N terminus peptide of rat

AQP8 (Ferri et al. 2003) and the resulting immunoreactivity

was analyzed by densitometric analysis.

Consistent with the semi-quantitative RT-PCR studies,

the AQP8 immunoreactivity (28 kDa band) detected in the

mitochondria (3000 g fraction) of the hypothyroid livers

appeared significantly increased (C107%) when compared
Journal of Endocrinology (2007) 192, 111–120
with the euthyroid counterpart, while T3 administration to

hypothyroid rats strongly decreased protein levels (K76%;

Fig. 3A–C). The nearly appreciable immunoreactivities

detected in the plasma membrane (17 000 g pellet) and

microsomal (100 000 g pellet) fractions hampered the

estimation of the AQP8 expression in such subcellular

compartments in the various thyroid states (data not shown).
Immunogold electron microscopy analysis of mitochondrial AQP8
in the various thyroid states

In order to evaluate the submitochondrial distribution as well

as the extent of AQP8 expression in the liver of rats in the

different thyroid states, an immunogold electron microscopy-

based morphometric analysis was performed. To do that, we
www.endocrinology-journals.org
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Figure 2 Time-course analysis of hepatic AQP8 mRNA after T3 administration to hypothyroid
rats. (A) Each treatment was performed in triplicate, but a representative panel is shown. b-Actin
mRNA levels were measured as the internal standard. (B) Quantification of the data obtained
from triplicate RT-PCR measurements. Data are expressed relative to the value obtained for hypo
liver, and are presented separately for each time point. Error bars represent S.E. of the mean (nZ3
rats). chr, chronic (1 week) administration of T3 to hypothryroid rats. Points labeled with
dissimilar letters (a–d) are significantly different (P!0.05).
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employed samples of the same freshly isolated 3000 g pellets of

mitochondria used for the above immunoblotting

experiments.

Confirming our previous immunoelectron microscopy

studies (Ferri et al. 2003, Calamita et al. 2005), AQP8 was

localized to the inner mitochondrial membrane (Fig. 4A–C).

Regardless of the thyroid status, AQP8 reactivity was not

homogenously distributed among mitochondria, some of

which appeared poorly labeled or even unstained to the

AQP8 antibody. However, there were quantitative differences

related to thyroid status. Indeed, when AQP8 expression was

evaluated morphometrically by counting the number of gold

particles over the immunoreactive mitochondria, the levels

of mitochondrial AQP8 were higher in the hypothyroid

(C117%) than in the euthyroid counterpart (Fig. 4E), while

T3 administration to hypothyroid rats decreased the levels

of AQP8 immunoreactivity by about K68%. This result was
www.endocrinology-journals.org
consistent with both the RT-PCR and the immunoblotting

studies. No immunogold particles were seen in the control

sections where the AQP8 antibodies were omitted (Fig. 4D).
Analysis of the liver IMM water permeability

Having found regulated expression of AQP8 in the liver

mitochondria in the various thyroid states, we then

biophysically assessed the water permeability properties of

such mitochondria. Using stopped-flow spectrophotometry,

we thus directly defined the osmotic water permeability (Pf)

of basically pure and homogeneous IMM vesicles from the

3000 g mitochondria prepared from the livers in the various

thyroid states by measuring the scattered light intensity. IMM

vesicles from the intact mitochondria were obtained by

sonication from liver mitoplasts and had a mean vesicle

diameter of 275G36 (nZ722), 263G31 (nZ639), and
Journal of Endocrinology (2007) 192, 111–120
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Figure 3 Immunoblotting analysis of AQP8 in the liver in the
various thyroid states. (A) Representative blot stained with
Coomassie blue used as control for total protein loading. (B)
Representative immunoblotting showing the comparative intensity
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282G34 (nZ776) nm for the N, HypoCT3, and Hypo livers

respectively. Such diameters were statistically similar in one

group vs each of the other two groups. Vesicles were

subjected rapidly to a hypertonic osmotic gradient (140

mosM) and the time course of the vesicle shrinkage was

followed from the change in scattered light. In line with our

previous study (Calamita et al. 2005, 2006), the rate constant

(Ki) of the osmotic equilibration of the IMM vesicles from all

three experimental conditions was strikingly high (Fig. 5A).
Journal of Endocrinology (2007) 192, 111–120
However, no significant differences were seen among the

calculated osmotic permeabilities of the IMM vesicles from

the N, HypoCT3, and Hypo livers (443.1G22.3, 462.9G
34.2, and 397.4G27.6 mm/s respectively; Fig. 5B). No

significant differences were also found in the extents of

inhibition of IMM osmotic permeability induced by 300 mM
HgCl2, a compound blocking most AQPs, including AQP8

(Ishibashi et al. 1997, Liu et al. 2006; Fig. 5B). Consistent with

the existence of a Hg2C-inhibitable aqueous pathway for

osmotic water permeability across the IMM, all three

inhibitions were reversed after exposure to the reducing

agent b-mercaptoethanol (Fig. 5B). The scattered light did

not change in a series of control experiments where vesicles

were mixed with isosomotic buffer (data not shown) proving

absence of artefacts.
Discussion

This work reports changes of AQP8 expression in liver

mitochondria of rats with different thyroid status. AQP8

mRNA and protein were increased in hypothyroid rats in

comparison with control or T3-treated hypothyroid rats. The

effect of T3 was relatively fast. Changes in AQP8 expression

were also confirmed by direct morphometric analysis of

immunogold particles in the electron microscopy. The IMM

osmotic permeabilities were found not to be correlated with

changes of AQP8 concentration. Data suggest that T3

negatively regulates the AQP8 gene, probably through a

negative thyroid hormone response element, and that control

of AQP8 expression may be relevant to the regulation of

mitochondrial metabolism by thyroid hormones.

The fact that (1) the levels of both AQP8 transcript and

protein were considerably increased in the hypothyroid liver

when compared with the euthyroid counterpart and (2) the

observation that the T3 treatment of hypothyroid rats

strongly decreased the AQP8 mRNA and protein to levels

slightly lower than those measured in euthyroid rats suggest

that the downregulation of AQP8 by T3 may well be due to

a T3-dependent interaction of thyroid hormone receptor

with putative negative thyroid hormone response elements

(nTRE; Crone et al. 1990) contained in the AQP8

promoter. This mechanism of regulation is normally used

by T3 when acting on its negatively regulated target genes

(Li et al. 2001, Shibusawa et al. 2003). The hypothesis of a

T3 regulation mediated by nTREs is consistent with the

time-course study showing that the timing of the

T3-transcriptional downregulation of AQP8 is short (few

hours), as for the other genes negatively modulated by T3

(Yen 2001). The precise mechanism of T3 regulation of

AQP8 will be a matter for future investigation aiming to

clone the rat AQP8 promoter and characterize its

modulation. Only a minority of the known target genes

are negatively regulated by T3, as they are expressed in the

pituitary or hypothalamus (Yen & Chin 1994, Yen 2001)

rather than peripheral tissues. Therefore, together with other
www.endocrinology-journals.org
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distribution in the liver of rats in various thyroid states. Pellets of freshly isolated liver
mitochondria (3000 g fraction) prepared from rat livers at various thyroid states ((A) N;
(B) HypoCT3; (C) Hypo) were analyzed by immunoelectron microscopy as reported in
Materials and Methods. Although AQP8 immunogold particles (arrows) are observed in all
three experimental conditions, the immunoreactivity observed over the inner mitochondrial
membrane is greater in the Hypo mitochondria than in the corresponding N and HypoCT3
samples. (D) Absence of immunoreactivity is seen in the mitochondrial pellets where the
primary antibody was omitted (negative control). Bar, 300 nm. (E) Morphometric analysis of
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number of gold particles over immunoreactive mitochondria. The mean number of AQP8
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negatively regulated hepatic genes (Feng et al. 2000), AQP8

may serve as a marker of T3 action outside the pituitary in

assessing the molecular mechanism of negative regulation by

nuclear hormone receptors.
www.endocrinology-journals.org
The negative modulation exerted by T3 on AQP8 seems

not to be a general effect on rat liver AQPs since the hepatic

mRNA levels of AQP9, the other major AQP in liver

(Huebert et al. 2002), were unchanged in the various thyroid
Journal of Endocrinology (2007) 192, 111–120
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Figure 5 Stopped-flow light scattering analysis of liver IMM
osmotic permeability in rats in various thyroid states. (A)
Representative experiments of stopped-flow light scattering using
IMM vesicles prepared from the 3000 g subpopulation of liver
mitochondria and subject to a hypertonic osmotic gradient of
140 mosM (see Materials and Methods for details). (B) IMM osmotic
water permeability and effect of 300 mM HgCl2 in rat livers in
various thyroid states. The osmotic membrane water permeability
(Pf) of the IMM vesicles is extraordinarily high and of comparable
extent in the livers under all three experimental conditions
(N, HypoCT3, and Hypo). No significant differences are also
observed regarding the inhibitory effect exerted by the HgCC ion
(PO0.05), a known blocker of the facilitated diffusion of water
across membranes, and the related reversal by 10 mM reducing
agent b-mercaptoethanol (b-ME). Data are mean values GS.E. from
three independent vesicle preparations.
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states. This idea agrees with the functional and regulatory

distinctions known to exist between AQP8 and AQP9 in rat

liver (Garcia et al. 2001, Kuriyama et al. 2002). The absence of

T3 regulation of AQP9 in rat liver does not confirm the

increase in the mRNA levels of AQP9 seen by Caperna et al.

(2007) who looked at the expression and distribution of

AQP9 in pig liver tissues after stimulation with hormones,

such as glucagon, insulin, and T3. Because the T3-induced

enhancement of AQP9 transcript seen by Caperna et al.

(2007) was not accompanied by a parallel increase in the same

AQP at a protein level, it is conceivable to speculate that the
Journal of Endocrinology (2007) 192, 111–120
T3 modulation of AQP9 in porcine liver is not of major

physiological relevance. As also concluded by the same

authors who found that glucagon enhanced the absolute levels

of AQP9 protein (in addition to the mRNA ones), in pig liver

AQP9 may be primarily responsive to glucagon induction.

Another important question arising from the present work

regards the functional meaning of the T3 modulation of

AQP8 in liver mitochondria. Because of its high water

conductivity (Ishibashi et al. 1997, Liu et al. 2006) and

localization in the inner mitochondrial membrane (Ferri et al.

2003, Calamita et al. 2005), it is tempting to speculate that the

effect of T3 on AQP8 expression may be a way by which

thyroid hormone participates in the morphological modifi-

cations observed in mitochondria of tissues from animals in

different thyroid states. Changes in mitochondrial volume

may also have consequences on mitochondrial metabolic

activities/efficiency (Garlid 1988, Kaasik et al. 2006) and may

participate in mechanical-signaling pathways (Safiulina et al.

2006). Indeed, inhibitors of the electron transport chain lead

to shrinkage of the mitochondrial matrix (Mustafa et al. 1966,

Hackenbrock 1968). However, although the idea of T3

modulation of mitochondrial shape involving the AQP8

water channel is consistent with the observed increase in

mitochondrial volume occurring in hypothyroid conditions

(Goglia et al. 1989), it contrasts with the fact that the overall

liver IMM osmotic water permeability and the related extent

of HgCC-inhibition are unchanged in the various thyroid

states. The inconsistency may be only apparent, due to the

fact that, as indicated by our recent biophysical study

(Calamita et al. 2006), pathways other than AQP8 may be

important for mitochondrial water permeability, such as the

mitochondrial transition pore (MTP). A narrow interplay

between mitochondrial volume and MTP is also indicated by

the fact that decreasing mitochondrial volume alters the

activity of several MTP regulators (Nogueira et al. 2005). As

hypothyroidism is known to render liver mitochondria

resistant to the opening of MTP (Chavez et al. 1998), while

in vivo thyroid hormone treatment has been reported to

induce the opening of MTP (Kalderon et al. 1995), a

compensatory mechanism through AQP8 may exist in

hypothyroid mitochondria to allow mitochondrial volume

homeostasis. This could explain why no differences are

observed between the overall osmotic water permeabilities of

the liver IMMs of Hypo and HypoCT3 rats. Alternative

meanings for the T3 regulation of AQP8 in rat liver, such as

being one of the mechanisms by which T3 modulates the

amino acid metabolism, cannot be ruled out since AQP8 has

been reported to be permeable to the NHC
4 ion in addition to

water (Jahn et al. 2004, Holm et al. 2005, Liu et al. 2006, Yang

et al. 2006b). This possibility is in line with the fact that (1)

hypothyroidism is associated with increased hepatic capacity

to synthesize urea in rats, and thus increased ammonia

production (Marti et al. 1988, Hayase et al. 1991) and (2) our

recent work of proteomics on rat liver showing that

hyperthyroidism leads to downregulation of ornithine

carbamoyltransferase and arginase-1 (Silvestri et al. 2006),
www.endocrinology-journals.org
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two enzymes underlying the urea cycle and the arginine

degradation pathway respectively.

In summary, the present work shows that triiodothyronine

modulates the expression of AQP8 in rat liver mitochondria.

The T3 action on AQP8 is exerted at a transcriptional level

and already occurs in vivo a few hours after T3 injection.

Future studies will be addressed to evaluate the functional

meaning of the thyroid regulation of AQP8, such as

influencing the mitochondrial shape and/or controlling the

amino acid metabolism by acting on the urea cycle.
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