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Abstract Fasting is characterized by disrupted thyroid feed-
back, with suppressed levels of thyroid hormones and paraven-
tricular thyrotropin releasing hormone (TRH). We found that
third ventricle administration of the deiodinase inhibitor, iopa-
noic acid, dose-dependently reduced deiodinase type II (DII)
activity selectively in the hypothalamus. This suppression of
DII by iopanoic acid during fasting prevented elevated DII activ-
ity and blunted the decline in hypothalamic TRH mRNA levels.
Because fasting-induced elevation in hypothalamic DII activity is
paralleled by increased hypothalamic T3 concentration, our
study suggests that T3 formation by DII in the hypothalamus
is the cause of disrupted thyroid feedback during fasting.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Hypothyroidism leads to a change in the activity of iodo-

thyronine deiodinases, enzymes that are necessary for activa-

tion and inactivation of circulating thyroid hormones. The

regulation of these enzymes occurs in a tissue-specific manner

[1]. Deiodinase type II (DII), which converts T4 to the active

thyroid hormone, T3, is present in the central nervous system

[2,3], pituitary [4], brown adipose tissue [5], and placenta [6]

and it shows increased activity when plasma T4 declines. It

has been suggested that the major role of DII is to maintain

T3 homeostasis producing adequate intracellular levels of T3

in order to ensure all T3-dependent cellular functions in the tis-

sue [7,8].

Hypothyroidism due to failure of the thyroid gland induces

a rise in hypothalamic TRH levels [9], which, in turn, triggers

release of thyroid stimulating hormone (TSH) from the ante-

rior pituitary. This classic negative feedback of the thyroid axis

is paradoxically reversed during fasting whereby suppressed

circulating T4 levels coincide with suppressed production and

release of TRH in the hypothalamic paraventricular nucleus

and median eminence [10]. The central mechanism that under-
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lies the emergence of this apparent paradox in thyroid feed-

back is not known.

We have previously shown [11,12] that an increase in the

enzymatic activity and mRNA levels of arcuate nucleus DII

occurs during short term fasting. T4 replacement in fasted ani-

mals did not reverse the increase in DII activity and mRNA

levels in the hypothalamus. Instead, DII activity during fasting

appears to be controlled by the inverse shift of circulating lep-

tin and corticosterone concentrations [12]. Thus, it is conceiv-

able that the increased DII activity during fasting underlies

elevated local T3 production (in spite of the systemic hypothy-

roidism), which, in turn, could trigger suppressed TRH pro-

duction and release. This study was undertaken to test this

hypothesis.
2. Materials and methods

2.1. Experiment 1
Ten Sprague–Dawley male rats (200–250 g BW; Taconic Farms,

Inc.) were used. Each animal was implanted with one cannula into
the third ventricle (Bregma �0.8 mm) connected to a micro-osmotic
pump (Alzet Corp., Palo Alto, CA; 1.0 ll/h for 3 days). Animals were
divided into two experimental groups: a group (n = 5) infused with
0.9% saline and fed ad libitum, and a second group (n = 5) infused with
0.9% saline and fasted for 48 h. Animals were infused for the duration
of the experiment. Rats were sacrificed and the hypothalamus was col-
lected and immediately frozen and stored at �80 �C until the activity
measurement was performed. The enzymatic activity was carried out
as previously described [12].

2.2. Experiment 2
Sixteen Sprague–Dawley male rats (200–250 g BW; Taconic Farms,

Inc.) were used. Each animal was implanted with one cannula into the
third ventricle (Bregma �0.8 mm) connected to a micro-osmotic pump
(Alzet Corp., Palo Alto, CA; 1.0 ll/h for 3 days). Animals were divided
into four experimental groups: a control group (n = 4) infused with
0.9% saline, a second group (n = 4) infused with 10�7 M iopanoic acid
(IOP; TCI America) diluted in 0.9% saline, a third group (n = 4) in-
fused with 10�5 M IOP diluted in 0.9% saline, and a fourth group
(n = 4) infused with 10�3 M IOP diluted in 0.9% saline. Animals were
infused for the duration of the experiment. Twenty-four hours after
implantation, all animals were food-deprived for 48 h. Animals were
then sacrificed and the hypothalamus, hippocampus, cerebellum, and
pituitary were collected and immediately frozen and stored at
�80 �C until the activity measurement was performed. The enzymatic
activity was carried out as previously described [12].
We define an undetectable level of DII enzymatic activity as a sam-

ple in which the amount of iodine released did not differ from the blank
control (where the homogenate was omitted).
blished by Elsevier B.V. All rights reserved.

mailto:sabrina.diano@yale.edu 


Fig. 1. Graph showing hypothalamic DII activity in ICV saline-
treated rats that were either fed ad libitum (n = 5) or fasted for 48 h
(n = 5). Results are expressed as means ± S.E.M. *P < 0.001.
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2.3. Experiment 3
Twenty Sprague–Dawley male rats (200–250 g BW; Taconic Farms,

Inc.) were used for this experiment implanted with a cannula into the
third ventricle (Bregma �0.8 mm) as described above. Animals were
divided into two experimental groups: a control group (n = 10) was in-
fused with 0.9% saline while the second group (n = 10) was infused
with 10�7 M IOP (TCI America) diluted in 0.9% saline (Alzet micro-
osmotic pump 1 ll/h, 3 days). All the animals were infused for the
duration of the experiment. Twenty-four hours after the implantation
of the pump, the animals were further divided in the following groups:
n = 5 infused with 0.9% saline and fed ad libitum; n = 5 infused with
0.9% saline and fasted for 48 h; n = 5 infused with 10�7 M IOP and
fed ad libitum; n = 5 infused with 10�7 M IOP and 48 h fasted. The
animals were then perfused and processed for semi-quantitative
in situ hybridization histochemistry.
An 826 bp fragment of complementary DNA (cDNA) of TRH was

amplified based on the RT-PCR reaction, using specific oligonucleo-
tide primers derived from the coding region of the rat TRH sequence
[13]. Total RNA was extracted from the hypothalamus by guanidium
thiocyanate–phenol–chloroform method using TriZol reagent (Life
Tecnologies, Grand Island, NY) and transcribed using the first-strand
cDNA Synthesis Kit (Pharmacia Biotech, Piscataway, NJ). PCR reac-
tion was carried out using the following protocol: 3 lg cDNA tem-
plate, 0.5 lM primers, 1.25 mM MgCl2, 80 lM dNTP and 2 U Taq
DNA polymerase. The resulting fragment, purified from agarose gel
using QIA quick Gel Extraction Kit (QIAGEN Inc.), was digested
with EcoRI and BamHI, inserted in pBluescript vector (Stratagene,
La Jolla, CA). Linearized DNA was transcribed using SP6 polymerase
(antisense cRNA probe) and T7 polymerase (sense cRNA probe;
Riboprobe Combination System SP6/T7, Promega Corporation, Mad-
ison, WI) and labeled with 35S-UTP (Amersham; 10 mCi/ml). The
hybridization was carried out as previously described [11].
The density of the hybridization product was assessed in the different

experimental groups. In order to digitally analyze, quantitate and com-
pare the amount of TRH mRNA, an Image-1/AT image processor
(Universal Imaging Corporation, West Chester, PA) using an Olympus
IMT-2 inverted microscope with dark field optics (Olympus Corpora-
tion, Lake Success, New York) and a Hamamatsu CCD camera (Ham-
amatsu Photonics, Hamamatsu, Japan) was employed. Six sections per
animal were selected from the same area to assess the intensity of the
hybridization product. The total surface covered by the hybridization
product was assessed within a test region measuring 2 · 105 mm2 that
contains the paraventricular nucleus. The threshold for measurement
was assessed for each slide by determining the background labeling
in the nearby ventromedial nucleus.

2.4. Experiment 4
Twenty male Sprague–Dawley rats (200–250 g BW; Taconic Farm,

Inc.) were used in this study. Each animal was implanted with one
cannula into the third ventricle (Bregma �0.8 mm) connected to a mi-
cro-osmotic pump (Alzet Corp., Palo Alto, CA; 1.0 ll/h for 3 days).
Animals were divided into four experimental groups: group 1 (n = 4)
and group 2 (n = 4) infused with 0.9% saline, group 3 (n = 4) and group
4 infused with 10�7 M IOP (TCI America) diluted in 0.9% saline. Rats
were infused for the duration of the experiment. Twenty-four hours
after implantation, groups 2 and 4 were food-deprived for 48 h. All
animals were then sacrificed and the hypothalamus was collected and
immediately frozen and stored at �80 �C.
Triiodothyronine (T3) was extracted from the hypothalamus by add-

ing methanol 95% containing PTU 10�4 M. Tissues were homogenized
and centrifuged at 13000 rpm and the pellets re-suspended twice using
methanol solution. The supernatants were evaporated to dryness and
resuspended in GAB buffer (0.2 M glycine/0.13 M acetate with 0.02%
BSA). T3 was determined by radioimmunoassay system (RIA). Sam-
ples and standard curve were incubated at 4 �C with polyclonal anti-
body against T3 (Fitzgerald Industries International, Concord, MA)
in RIA buffer GAB. Three days later, 10000 cpm of radiolabeled
[125I] T3 (Specific activity 2200 Ci/mmol; Perkin–Elmer Life Sciences,
Boston MA) was added to each tube. After two days of incubation,
a rabbit gamma globulin (Jackson ImmunoResearch Laboratories) di-
luted in 0.1 M EDTA and 16% polyethylene glycol with goat antirab-
bit IgG (Antibodies Incorporated, Davis CA) in GA buffer (0.2 M
glycine/0.13 M acetate) was added to precipitate the antibody–T3 com-
plex. After centrifugation the precipitates were counted in a c-counter.
T3 is expressed in picogram per milligram of weight tissue.
2.5. Statistical analyses
Means were compared between experimental groups using one-way

analysis of variance (ANOVA) with mean comparisons by the Stu-
dent–Newman–Keuls method. A level of confidence of P < 0.05 was
used to determine significant differences.
3. Results

3.1. Experiment 1

As previously reported by our group [11,12], fasting in saline

infused animals (96.33 ± 1.69 fmol/h/mg protein) increased

DII enzymatic activity compared to ad libitum fed rats

(79.75 ± 1.55 fmol/h/mg protein; Fig. 1).

3.2. Experiment 2

The intracerebroventricular infusion of IOP in fasted rats

showed that IOP at a concentration of 10�7 M can selectively

inhibit the activity of DII in the hypothalamus without inter-

fering with its activity in other brain regions or in the pituitary

(Table 1). In the hypothalamus, IOP infusion inhibits DII

activity at all three concentrations used (undetectable levels),

while in the pituitary, as well as in the cerebellum, a partial

inhibition (about 45% and 58%, respectively) occurs at a con-

centration of 10�5 M, and a total inhibition occurs at 10 �3 M

(Table 1). In the hippocampus, only the 10�3 M concentration

induces a complete inhibition of DII activity, while all of the

other concentrations had no effect on the enzyme function

(Table 1).

3.3. Experiment 3

As previously shown in fasted compared to fed rats, in situ

hybridization for TRH mRNA in the paraventricular nucleus

of the hypothalamus of saline infused rats showed that fasting

induces a decrease in TRH mRNA levels (OD = 1801 ± 177)

compared to fed control animals (OD = 2850 ± 50; P < 0.05;

Fig. 2). When the animals were treated with IOP, fasting

blunted the decrease in TRH mRNA levels (OD =

2293 ± 178) compared to that of IOP-treated fed animals

(OD = 2577 ± 123; P > 0.05; Fig. 2). In fed groups, IOP treat-

ment slightly but not significantly decreased TRH mRNA lev-

els compared to the saline-treated rats (P > 0.05). On the other

hand, in IOP-treated fasted rats the levels of TRH mRNA was

statistically higher than the levels of the saline-treated fasted

group (P < 0.05).



Table 1
DII activity measurements (expressed in fmoles I�/h/mg protein) in the pituitary, hypothalamus, hippocampus and cerebellum of third ventricle
implanted rats (n = 4 for each group) with saline, 10�7, 10�5 and 10�3 M iopanoic acid (IOP)

Saline 10�7 M IOP 10�5 M IOP 10�3 M IOP

Pituitary 1014 ± 39.37 1077.5 ± 13.44 453.67 ± 30.36a,b NDa,b,c

Hypothalamus 96.33 ± 1.69 NDa NDa NDa

Hippocampus 68.0 ± 3.0 72.67 ± 1.15 80.33 ± 6.75 NDa,b,c

Cerebellum 53.67 ± 5.25 50.33 ± 3.18 31.0 ± 5.77a,b NDa,b,c

Results are expressed as means ± S.E.M.
ND, not detectable.
aP < 0.05 compared to the saline control.
bP < 0.05 compared to the 10�7 M IOP.
cP < 0.05 compared to the 10�5 M IOP.

Fig. 2. In situ hybridization for TRH mRNA in the PVN revealed that while fasting suppressed TRH mRNA levels in the saline-treated animals
(P < 0.05), ICV IOP (dissolved in saline) injections blunted the fasting-induced decline in TRH mRNA levels of the PVN. Results are expressed as
means ± S.E.M. *P < 0.05 compared to saline-treated fed, IOP-treated fed and fasted rats. P > 0.05 between fed saline and fed IOP-treated rats. OD,
arbitrary optical density.
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3.4. Experiment 4

In the present as well as previous studies, we showed [11,12]

that during food deprivation DII activity levels are increased

in the hypothalamus. To assess whether this elevation in activ-

ity also induces increased tissue levels of T3, we performed T3

measurements in the hypothalamic tissue of fasted and fed ani-

mals. Moreover, to determine whether the effect of IOP in

blunting TRH mRNA decline during fasting is due to a change

in the tissue T3, we assessed hypothalamic T3 levels in IOP in-

fused rats that were either fasted or fed ad libitum. Hypotha-

lamic T3 levels were significantly higher in saline-treated

fasted rats (2.32 ± 0.13 pg/mg wet tissue) compared to the sal-

ine-treated ad libitum fed animals (1.71 ± 0.03 pg/mg wet tis-

sue; Fig. 3). On the other hand, in IOP-infused rats, food
Fig. 3. Graph showing hypothalamic T3 levels in fed and fasted rats
after ICV injection of saline or IOP (n = 4 for each group). Results are
expressed as means ± S.E.M. *P < 0.05 compared to saline-treated fed,
IOP-treated fed and fasted rats. P > 0.05 between fed saline, fed IOP
and fasted IOP-treated rats.
deprivation did not affect hypothalamic T3 levels

(1.81 ± 0.03 pg/mg wet tissue) and was not significantly differ-

ent from the levels of the fed animals (1.95 ± 0.04 pg/mg wet

tissue). No significant differences (P > 0.05) in T3 levels were

found between the fed saline-treated, fed IOP-treated and

fasted IOP-treated rats.
4. Discussion

The results of this study suggest that activation of hypotha-

lamic DII during fasting contributes to elevated local T3 pro-

duction, which, in turn, could trigger suppression of TRH

mRNA levels in the paraventricular nucleus. Although IOP

treatment did not reduce hypothalamic T3 levels in fed ani-

mals, it did prevent T3 elevation induced by fasting. We found

that in fed animals treated with IOP hypothalamic T3 levels

were slightly elevated compared to the saline-treated fed ani-

mals and this could be the reason for the slight suppression

of TRH levels in the IOP-treated fed group. While it may ap-

pear to be a paradox, we suggest that the elevated hypotha-

lamic T3 levels in IOP-treated fed group could be due to

increased transport of circulating T3 to the hypothalamus

(rather than local formation). However, fasting-induced DII

increase was blocked by IOP hence the diminished suppression

of TRH.

To block DII activity, we employed IOP. IOP has been pre-

viously shown to be a potent competitive inhibitor of DII

in vivo as well as in vitro [14–17].

In our study, we observed that IOP had a differential effect

in all brain areas examined. We propose that this differential

effect is the consequence of the accessibility of IOP. Because

the cannulae in the third ventricle were positioned in the
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anterior portion of the hypothalamus (Bregma �0.8), it is

reasonable to hypothesize that the strongest effect of IOP at

the lower dose (10�7 M) was found in the hypothalamus,

compared to the hippocampus, cerebellum and pituitary

gland.

In the central nervous system, the majority of the active

form of thyroid hormone, T3, derives from the intracellular

5 0-monodeiodination of T4 by type II 5 0-monodeiodinase

(DII) [18,19]. DII activity measurements in rat brain have

shown the highest enzymatic activity in the arcuate nu-

cleus/median eminence (ARC/ME) fragments of the hypo-

thalamus, while a minimal activity has been found in the

paraventricular nucleus (PVN), where TRH-containing cells

are located [2]. The appearance of DII mRNA in the epen-

dymal zone and the ME [3], together with our previous

observation of glial fibrillary acidic protein (GFAP) in cells

expressing DII mRNA [20], an earlier report [21] on the

expression of DII in glial cells in neonatal rat brain and

our recent finding of DII immunoreactivity in the hypothal-

amus [22] strongly indicate that DII producing cells are

astrocytes and tanycytes. These glial cells provide an exten-

sive network of cellular processes in the ARC [23,24] and

suggest a paracrine action on PVN-projective ARC neurons

via the production of thyroid hormones.

We have recently shown [12] that during food deprivation,

the increased DII activity is due to an inverse shift in circu-

lating levels of corticosterone and leptin. Now we showed

that increased DII activity during fasting triggers elevated

local T3 levels and suppression of DII activity by IOP pre-

vents this elevation. Furthermore, IOP infusion prevents

fasting-triggered decrease in TRH mRNA levels. Thus, we

propose that this previously unsuspected existence of hypo-

thalamic hyperthyroidism in the face of systemic hypothy-

roidism during fasting may be responsible for the decline

of TRH mRNA levels and for the reversal of negative feed-

back of the thyroid axis.

The arcuate nucleus has been found to contain an abun-

dant population of thyroid receptor-producing neuronal

nuclei [25], as well as populations producing various regula-

tory peptides and neurotransmitters such as neuropeptide

Y, opioid peptides, growth hormone releasing hormone and

dopamine, all of which are known to influence the production

and release of TRH [26–28]. We have demonstrated the exis-

tence of a monosynaptic pathway between the arcuate nu-

cleus that contains DII-producing glial cells, and the

paraventricular TRH neurons that project to the median emi-

nence with direct access to fenestrated capillaries [20]. In

addition, we [29] and others [30] have shown that the arcuate

nucleus NPY/AgRP neurons provide a massive inhibitory in-

put on TRH cell bodies and proximal dendrites via symmet-

ric synapses. Another study [31] also reported that TRH cells

are symmetrically contacted by nerve terminals containing

AgRP, which is co-produced in the NPY arcuate neurons.

In the present study we showed that activation of DII induces

alterations in arcuate nucleus T3 levels and that may be

responsible for the decrease in TRH mRNA levels during

fasting. Thus we hypothesize that the increased in T3 levels

during food deprivation could affect and altered neuropeptide

expression in leptin-responsive arcuate neurons that strongly

project to paraventricular TRH neurons. Studies are under-

way to delineate this signaling modality in the hypothalamic

regulation of the thyroid axis.
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